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On Synthesizing Memristor-Based Logic Circuits
With Minimal Operational Pulses

Hsin-Pei Wang , Chia-Chun Lin, Chia-Cheng Wu , Yung-Chih Chen , and Chun-Yao Wang, Member, IEEE

Abstract— Memristor, which is a two-terminal nanodevice,
widely used in various fields, e.g., machine learning and neu-
romorphic systems, has attracted much attention these years.
Memristor can also be used to realize an implication logic gate
and thus logic circuits. However, the fanouts in a memristor-
based logic circuit have some constraints and need to be processed
with special care. On the other hand, in addition to the number
of memristors, the number of operational pulses is another
metric to measure the quality of a memristor-based logic circuit.
Hence, in this paper, we propose a synthesis algorithm to
deal with the fanout problems in memristor-based logic circuits
using implication logic gates for having a minimal number
of operational pulses. We conducted experiments on a set of
MCNC benchmarks. The experimental results show that the
proposed algorithm can reduce 29% operational pulses and 36%
memristor count on average compared with the state-of-the-art.

Index Terms— Fanout, implication logic, logic synthesis,
memristor, minimization.

I. INTRODUCTION

MEMRISTOR (a contraction for memory resistor) was
named and originally proposed by Chua [5]. In addition

to resistor, capacitor, and inductor, memristor is regarded as a
fundamental passive circuit element. The first memristor was
implemented by researchers at Hewlett-Packard Labs [23].
They demonstrated a memristive device that was based on
two thin-layer titanium dioxide (TiO2) films with a conductive
doped region and an insulating undoped region as shown
in Fig. 1(a).

When a voltage is applied to a TiO2-based device, oxygen
atoms in the material will diffuse and the boundary will
move back and forth between the two regions. This diffusion
mechanism makes the material thinner on one side and thicker
on the other side. For example, if a voltage Vapp applied
to a TiO2-based device is under a reverse bias (>Vopen) as
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Fig. 1. (a) TiO2-based memristor. (b) High-resistance state.
(c) Low-resistance state.

Fig. 2. Ideal I–V characteristic of a memristor.

shown in Fig. 1(b), the resistance of the memristor (also called
the memristance) is subject to increase. On the contrary, if a
voltage Vapp applied to a TiO2-based device is under a forward
bias (<Vclose) as shown in Fig. 1(c), the memristance is subject
to decrease. This indicates that a memristor has two states—
high resistance and low resistance. However, when the applied
voltage is removed, the memristor will stay at its resistance
state and exhibit the behavior of a “memory.”

Fig. 2 is an ideal I–V characteristic of a memristor [23],
[25], [31], [32]. Low (high) resistance represents the state of
logic 1 (0). If an applied voltage is smaller (larger) than the
threshold voltage Vclose (Vopen), the state of the resistance
will change from high to low (low to high). Otherwise,
the memristor stays at the present state. Other voltages shown
in Fig. 2 are described as follows:

1) Vset: A threshold voltage, which is smaller than Vclose,
changes the resistance state from high to low.
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2) Vclear: A threshold voltage, which is larger than Vopen,
changes the resistance state from low to high.

3) Vcond: A conditional voltage that is necessary in the
operations with two memristors.

The research and development of memristive devices have
brought technology enhancement, but also posed challenges
in different aspects. In the device implementation, different
materials and compositions characterize different device prop-
erties [7], [16]–[18], [20], [21].

Generally, the favorable properties involve nonvolatil-
ity, smaller area, and lower power consumption. However,
the choice of materials in the devices is highly dependent
on the application. Some features of specific compounds
might be beneficial in some context, but disadvantageous
otherwise. An optimal memristive device for various technical
requirements is imperative.

In the device modeling, a well defined and effective model
of memristors is still required for a better understanding of
their dynamics. Some noteworthy models in [32] and [33] were
proposed by researchers.

In the logic design, memristor-based logic circuits create
a new path for the exploration of new computing paradigm
as well as architectures, and pose a promising alternative to
conventional CMOS circuits. However, there exists various
architectures and design styles that need to be evaluated and
analyzed comprehensively such that a solution benefiting the
most from the computing capability of memristors will be well
recognized [2], [4], [5], [11], [15], [30].

Memristors have been widely used in various levels of
applications, such as machine learning [3], logic circuits [2],
[11], [14], [19], [27], and neuromorphic systems [28]. The
applications of memristors in the logic design level, on which
this paper focuses, can be classified into three categories as
follows [26].

1) Memristor-only logic: Using memristors solely to imple-
ment logic operations, e.g., implication (IMPLY) logic
[2], [27] and memristor-aided logic (MAGIC) [9].

2) Memristor/CMOS hybrid logic: Combining CMOS
components and memristors together in Boolean
logic [8], [11] and threshold logic [15].

3) Memristor-based programmable logic array: Connect-
ing vertical and horizontal wires with memristors
to form an array, such as memristor crossbar
array [30].

In this paper, we use the IMPLY gate, which is a universal
gate, in the first category to synthesize logic circuits. There are
two metrics to measure the quality of a memristor-based logic
circuit. One is the number of operational pulses, and the other
is the number of memristors. Some previous works [13], [19]
synthesized memristor-based circuits using only two working
memristors and other input memristors. Although using only
two working memristors minimizes the area of synthesized
circuits, it could need a lot of pulses to operate the circuits.
As a result, the synthesized circuits will have a longer delay
from the viewpoint of performance. Since the size of a
memristor is small, the implementation cost of a memristor is
inexpensive [6], [22]. Hence, to reduce the operational delay of
the synthesized circuit, we remove the constraint of using only

Fig. 3. Truth table of IMPLY gate.

two working memristors, and adopt more working memristors
in the circuits as did in [2] and [11].

In this paper, we propose an algorithm to synthesize
memristor-based circuits for having minimal operational
pulses. First of all, we synthesize a Boolean function using
IMPLY gates only by a synthesis tool ABC [33]. However,
the generated IMPLY network has a problem that they might
be nonrealizable by memristors due to fanouts. Therefore,
we have to deal with the fanout problem by restructuring the
IMPLY networks in our algorithm. Furthermore, our approach
also considers to synthesize a network with a minimal number
of pulses during operations. We conducted experiments on a
set of MCNC benchmarks. The experimental results show that
the proposed algorithm can reduce 29% operational pulses and
36% memristor count on average compared with the state of
the art [11].

The main contributions of this paper are threefold.

1) We propose an algorithm to synthesize memristor-based
logic circuits while minimizing operational pulses.

2) We propose new structures for XOR and XNOR using
IMPLY gates considering the fanout problem.

3) We solve the fanout problem in the IMPLY netlist.

The rest of this paper is organized as follows. Section II
introduces the background of this paper. Section III presents
our algorithm. Section IV shows the experimental results.
Finally, we conclude this paper in Section V.

II. PRELIMINARIES

A. Implication Logic

Aside from the well-known fundamental logic operations—
AND, OR, and NOT—implication logic is another operation
proposed [29]. It is also known as implies or is typically
explained as If …, then …. The symbol of IMPLY gate is
denoted as “→.” For a two-input IMPLY gate “x → y,”
its truth table is shown in Fig. 3. When x is true (1) but
y is false (0), x → y is false (0). For the other cases,
x → y is always true. Hence, x → y is logically equivalent
to x̄ + y, and the IMPLY gate can be expressed as that shown
in Fig. 4(a). An IMPLY gate can be realized by two memristors
and a resistor as shown in Fig. 4(b) where an input memristor
and a working memristor are connected together.

The functions of input memristor and working memristor
are described as follows.

1) Input memristor: A memristor that holds an input signal
and stays its resistance state after computation.

2) Working memristor: A memristor that can hold an input
signal, a constant 0 value, or the operational result of an
IMPLY gate.
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Fig. 4. (a) Symbol for IMPLY gate. (b) Memristor-realized IMPLY gate.

In Fig. 4(b), to perform the x → y operation, signals
x and y need to be present on the memristors X and Y .
Then, Vcond and Vset voltages are imposed on the memristors
X and Y , respectively. We know that the resistance state of
the memristor X will not be switched when Vcond is larger
than Vset from Fig. 2. The memristor X is acted as the input
memristor and connected to the negated input (single line) of
the IMPLY gate in Fig. 4(a).

Next, we discuss the operations in two cases using Fig. 4(b).
Case 1: If the memristor X is in logic “1,” which means it

is in the low-resistance state (closed) and Vx is approximate
to Vcond, a voltage drop (Vset − Vcond) will be across the
memristor Y . Hence, this voltage drop on the memristor Y
is negative and larger than Vclose, and will not cause the
memristor Y change its state. The corresponding Boolean
expression of this operation is as follows:

x = 1, x̄ + y = y.

Cases 2: If the memristor X is in logic “0,” which means
it is in the high-resistance state (open) and Vx is approximate
to 0, a voltage drop Vset will be across the memristor Y . Hence,
the resistance state of memristor Y will be changed from high
to low according to Fig. 2. The result of this case is logic “1”
and saved on the memristor Y . The corresponding Boolean
expression of this operation is as follows:

x = 0, x̄ + y = 1.

In summary, Fig. 4(b) realizes an IMPLY gate, and the
memristor Y is acted as the working memristor connected
to the nonnegated input (double lines) of the IMPLY gate
in Fig. 4(a).

B. Constructing NOT and NAND Using IMPLY Gates

This section presents how to use IMPLY gates to construct
NOT and NAND gates. As mentioned, the input values need to
be present on the memristors before performing an IMPLY
operation. Hence, when we want to construct a NOT gate,
an input value x needs to be present on one memristor M1
as shown in Fig. 5(a).1 Also, we need to initialize the mem-
ristor M2 as logic “0” by imposing the voltage Vclear on M2,
and imposing no voltage on M1. Note that these initialization
actions can be finished in the same operational pulse. Then,

1We use the notation x/M1 to link the input variable x and the
memristor M1.

Fig. 5. (a) NOT operation. (b) NAND operation. (Blanks in the table mean
no voltage applied).

Fig. 6. Fanout problem.

the complement of x can be computed from x → 0 in the next
pulse, and the result x̄ is saved on the memristor M2. From
the explanation, we know that two memristors, i.e., one input
memristor M1 and one working memristor M2, are required
to construct a NOT gate in two voltage pulses.

For a NAND gate in Fig. 5(b), two inputs x and y have
to be present on the memristors M1 and M2, and logic “0”
is set on M3 by imposing Vclear and imposing no voltage on
the M1 and M2 in Pulse 1. By performing the NOT operation
as mentioned earlier, we obtain an output value x̄ , which is
saved in M3, in Pulse 2. In Pulse 3, we perform y → x̄ , and
the result (ȳ + x̄ = y · x) is saved in M3. Hence, two input
memristors (M1 and M2), one working memristor (M3), and
three operational pulses are required for a NAND gate.

C. Fanout Problem

Memristors enable stateful logic operations, i.e., the same
memristor both performs a logic operation and saves the resul-
tant logic value on itself [1]. Hence, there exists an inherent
problem regarding the fanout of a gate in the memristor-based
circuits. That is, when the output of an IMPLY gate connects
to many nonnegated inputs of IMPLY gates, this output value,
say v1, intends to be used for these inputs of IMPLY gates.
However, v1 will be updated as v2 on the same working
memristor, say M1, after computation such that the original
value v1 is lost and cannot be reused for other inputs.

For example, in Fig. 6, the output value v1 of an IMPLY gate
G0 is saved on the working memristor M1. Since G0 connects
to G1 and G2, the value on the working memristor M1 will
be updated as v2 at the output of the IMPLY gate G1. As a
result, we will use the incorrect value v2, which should be v1,
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Fig. 7. Fanout connections with all input memristors.

Fig. 8. Fanout connections with only one working memristor. (a) Second
scenario. (b) Conflicting fanouts (third scenario).

to perform the IMPLY gate G2 on the other fanout branch.
This error is the fanout problem that needs to be dealt with in
memristor-based logic circuits.

III. ALGORITHM

In this section, we first analyze the fanout problems in the
circuits in different scenarios. Then, we present the methods
for solving them. At last, we show the overall flow of the
proposed algorithm.

A. Fanout Analysis

In this section, we analyze different scenarios about fanout
connections, which may or may not cause incorrect results.
The first scenario is that all memristors connected to the fanout
are input memristors of IMPLY gates as shown in Fig. 7.
In this scenario, since no fanout branch is acted as a working
memristor among G1 to Gn , the value at the output of G0
(fanout) will not be changed and can be reused after com-
putation on G1 to Gn . Hence, this scenario does not incur
errors.

The second scenario is that only one of the fanout branches
connects to a working memristor as shown in Fig. 8(a).
In this scenario, we have to consider the sequence among all
operations in advance for having a correct result. Specifically,
the working memristor of Gn has to work with the output
value of G0 (fanout) in the last pulse of operation sequence.
If we comply with this operation sequence, the result of the
circuit will be correct; otherwise, the result will be incorrect.

The third scenario is to consider two fanouts simultaneously,
where one branch of each fanout is connected to one working
memristor. Fig. 8(b) shows an example of such scenario.
The fanout x is connected to the input memristor of G1
and the working memristor of G2, but y is connected to
G1 and G2 oppositely. In this scenario, if G1 is operated
first, the output of G1 will affect the original value y passing

Fig. 9. (a) Subcircuit with the fanout problem. (b) Adding two NOT gates
for the fanout problem. (c) Proposed method for the FN fanout.

to G2. On the other hand, if G2 is operated first, the output
of G2 will affect the original value x passing to G1. Thus, both
operation sequences will incur errors. We call this scenario as
conflicting fanouts, which will be further discussed and solved
in Section III-B.

For the other scenarios that a fanout is connected to more
than one working memristor, the situation is similar to the
scenario mentioned in Fig. 6 and results in incorrect outputs.

B. Proposed Methods

To deal with the fanouts, except for the first and second
scenarios, mentioned in Section III-A, we propose some
methods in this section.

The main idea for solving the fanout problem is to duplicate
the fanout value with additional working memristors in the
other branches. Prior to discussing the proposed methods,
we introduce two methods in [2]. The first method includes
two cases. One is to copy the fanout value x by adding two
NOT gates (G4 and G5) as shown in Fig. 9(b) where its original
circuit having the fanout problem is shown in Fig. 9(a). In
Fig. 9(b), the sequence of operational pulses is also listed,
and the result of G3 after Pulse 4 is ( f̄4 + x), which is the
same as the result of G3 in Fig. 9(a).

The other case is to recompute the fanout value x exploiting
a NOT gate pair (G4 and G5), and use another memristor (M6)
to save the output value as shown in Fig. 10(b), where its orig-
inal circuit having the fanout problem is shown in Fig. 10(a).
In Fig. 10(b), the result of G3 after Pulse 4 is ( f̄4 + x̄), which
is identical to that in G3 of Fig. 10(a).
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Fig. 10. (a) Subcircuit with the fanout problem. (b) Adding two NOT gates
for the fanout problem in [2]. (c) Proposed method for the BN fanout.

Fig. 11. Duplicating the subcircuit for the fanout problem [2].

The second method is to duplicate the whole subcircuit
in the fanin cone of the fanout to obtain a copy of fanout
value as shown in Fig. 11. In Fig. 11, the additional subcircuit
consisting of G6, G7, and G8 recomputes the fanout value
of G3 with extra operational pulses.

Although these methods solved the fanout problem success-
fully, they caused the number of operational pulses increase,
especially for the second method. Hence, we propose three
new methods to deal with the fanout problem for minimizing
the operational pulse increase.

The first two new methods are related to the previous
work about adding NOT gates. We use the same circuit
in Figs. 9(a) and 10(a) to demonstrate the improvement of
the new methods against the previous works. The first new
method is for a subcircuit having a NOT gate driven by a
fanout G0 as shown in Fig. 9(a), where G1 is a NOT gate.

This fanout is called an in front of NOT (FN) fanout. Since
the output value of G1 is x̄ , we remove the wire connecting
G0 to the nonnegated input of G3, and insert an additional
NOT gate G4 between G1 and G3 as shown in Fig. 9(c). As a
result, the functionality at G3’s nonnegated input is the same
as the fanout value x . Using this new method, the numbers of
required memristors and pulses in Fig. 9(c) are both reduced
by one compared with Fig. 9(b).

Additionally, this method is also beneficial to solve the
fanout problem at the primary inputs (PIs). If an FN fanout
occurs at a PI, we can solve it with this method.

Our second new method is for a subcircuit having a fanout
at the output of a NOT gate G1 as shown in Fig. 10(a).
This fanout is called an in back of NOT (BN) fanout. In this
method, we first remove one fanout branch connecting G1
to the nonnegated input of G3 as shown in Fig. 10(c).
Since the fanout is the output of the NOT gate G1 with the
functionality x̄ , we know the functionality of negated input of
the NOT gate G1 is the complement of the fanout, x , as shown
in Fig. 10(c). Hence, we can insert a NOT gate G4 between G0
and the original destination of the removed fanout branch. As
a result, the functionality at G3’s nonnegated input is still x̄ .
Using this new method, the numbers of required memristors
and pulses in Fig. 10(c) are both reduced by one compared
with Fig. 10(b).

The last new method is to solve the conflicting fanouts.
As mentioned in Section III-A, Fig. 8(b) shows conflicting
fanouts with a fanout pair (x , y). We classify the conflicting
fanouts into three types based on the connectivity of (x , y) as
follows.

1) The fanout pair (x , y) is connected as Fig. 8(b).
[We redraw it in Fig. 12(a) for convenience.] The con-
nection with more working memristors is an extension
of this type. In fact, this type only requires that x and
y cannot connect to any NOT gates.

2) A branch of x (or y) is connected to a NOT gate, and
only a branch of y (or x) is connected to a working
memristor as shown in Fig. 12(c).

3) A fanout x (or y) is the output of a NOT gate as shown
in Fig. 12(e).

For the first-type conflicting fanouts, we use the identity of
(y → x) ≡ (x̄ → ȳ) to form the functionality of G2 as shown
in Fig. 12(b).

For the second-type conflicting fanouts, we apply the
method for the FN fanout to solve it. As shown in Fig. 12(d),
since x is connected to a NOT gate, we copy the input value x
on another memristor M4 by an additional NOT gate. Hence,
the operation can be performed correctly.

For the third-type conflicting fanouts, we restructure the
circuit to obtain a functionally equivalent circuit. We can see
that the functionalities at G2 and G3 in Fig. 12(e) and (f) are
equivalent.

Since XOR and XNOR gates contain conflicting fanouts, they
cannot be directly realized by IMPLY gates. Thus, we have
to solve the conflicting fanout problems in them. As a result,
we construct new XOR and XNOR gates without having con-
flicting fanouts. In the following paragraphs, we elaborate the
construction methods for them.
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Fig. 12. (a) First-type conflicting fanouts. (b) Restructuring the subcircuit to solve the first-type conflicting fanouts. (c) Second-type conflicting fanouts.
(d) Applying the method for FN fanout to solve the second-type conflicting fanouts. (e) Third-type conflicting fanouts. (f) Restructuring the subcircuit to solve
the third-type conflicting fanouts.

Fig. 13. XOR gate structure. (a) With conflicting fanouts. (b) Without
conflicting fanouts.

The Boolean expression of XOR using IMPLY operations
is as follows:

x ⊕ y = x ȳ + x̄ y

= x̄ + y + ȳ + x

= x → y + ((ȳ + x) → 0)

= x → y + ((y → x) → 0)

= (x → y) → ((y → x) → 0).

Fig. 13(a) is the corresponding IMPLY network of this
expression where the fanout pair (x , y) forms conflicting
fanouts. Hence, we rewrite (y → x) as (x̄ → ȳ) by the law
of contraposition such that

x ⊕ y = (x → y) → ((x̄ → ȳ) → 0)

= (x → y) → (((x → 0) → (y → 0)) → 0).

Fig. 14. XNOR gate structure. (a) With conflicting fanouts. (b) Without
conflicting fanouts.

The resultant circuit of XOR is as shown in Fig. 13(b). The
sequence of operational pulses is also listed in Fig. 13(b).
Note that the added NOT gates in Fig. 13(b), i.e., G5 and G6,
could be reused for the FN fanout in the first new method if
needed. In summary, the proposed new structure for an XOR

gate solves the conflicting fanout problem and only needs six
operational pulses.2

Since XNOR is the complement of XOR, one may trivially
add a NOT gate at the output of an XOR gate to construct an
XNOR such that one more memristor and one more operational
pulse are required. However, here we propose a novel structure
for an XNOR gate without having the memristor and the
operational pulse overheads.

2The solutions in state of the art [10] and [24] need nine and 13 operational
pulses for an XOR gate, respectively.
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Fig. 15. Example. (a) Original IMPLY network with fanout problems. (b) Subcircuit after solving the conflicting fanouts. (c) Subcircuit after solving the
conflicting fanouts and FN fanouts. (d) Subcircuit after solving the BN fanout. (e) Subcircuit after solving the remaining fanout. (f) Subcircuit after solving
the additional FN fanout. (g) Resultant IMPLY network without fanout problems.

The Boolean expression of XNOR using IMPLY operations
is as follows:

x ⊕ y = x̄ ȳ + xy

= x + y + ȳ + x̄

= x̄ → y + ((ȳ + x̄) → 0)

= x̄ → y + ((ȳ + (x → 0)) → 0)

= x̄ → y + ((y → (x → 0)) → 0)

= (x̄ → y) → ((y → (x → 0)) → 0)

= ((x → 0) → y) → ((y → (x → 0)) → 0).

Fig. 14(a) is the corresponding IMPLY network of this
expression where the fanout pair (x̄ , y) forms conflicting
fanouts. Hence, we also rewrite ((x → 0) → y) as
((y → 0) → x) such that

x ⊕ y = ((y → 0) → x) → ((y → (x → 0)) → 0).

The resultant circuit of XNOR is as shown in Fig. 14(b).
Similarly, the NOT gates in Fig. 14(b), i.e., G1 and G6, could
be reused in the first two new methods if needed. In summary,
the proposed new structure for an XNOR gate solves the
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Fig. 16. Flowchart of the proposed algorithm.

conflicting fanout problem and only needs six operational
pulses.

Applying these three new methods, we can solve some
fanout problems in the network. However, if a fanout prob-
lem cannot be solved by the proposed new methods due to
structural mismatch, we can apply the method in the previous
work at last as introduced in the beginning of this section.

Next, we discuss the sequence of applying these new
methods. The application of the proposed new methods will
cause different effects on the resultant circuit. Hence, we pri-
oritize the proposed new methods heuristically for achieving a
minimal operational pulse increase in the algorithm as follows:

1) the third method for solving the conflicting fanouts;
2) the first method for solving the FN fanouts;
3) the second method for solving the BN fanouts;
4) the methods in the previous works for solving the

remaining fanouts.

The reasons for the priorities are threefold.

1) Solving conflicting fanouts can create additional NOT

gates in the network, which could be reused for
FN fanouts.

2) The fanouts at the PIs are FN fanouts rather than
BN fanouts.

3) The proposed methods are better than the previous work
in terms of the number of operational pulses in general.

In the synthesis of memristor-based networks, in addition to
the circuit structure determination, the sequence of operational
pulses has to be computed as well. One can trivially divide
the algorithm into two stages, i.e., solving all the fanout
problems first by restructuring the circuit, then computing
the sequence of operational pulses next. However, using this
way, the number of operational pulses will not be minimal
due to the absence of gate reuse. Thus, the determination of
the circuit structure and the computation of operational pulse
sequence are interleaved for different kinds of fanouts in the
proposed algorithm. After our study, all the conflicting fanouts

and FN fanouts can be processed first by substituting the
corresponding structures. Then, we compute the sequence of
pulses in the topological ordering. However, if the computation
of pulse sequence encounters the other kinds of fanouts such
that the circuit cannot be further processed, we iteratively solve
each fanout and compute the sequence of operational pulses
until the entire circuit has been processed.

For example in Fig. 15(a), there exist fanout problems in
this circuit. First, conflicting fanouts at a fanout pair (d , G2)
are identified as indicated in a square. We restructure the cor-
responding subcircuit by adding two NOT gates G16 and G17
into it as shown in Fig. 15(b). Then, two FN fanouts at the
PI a in Fig. 15(a) and at the output of G2 in Fig. 15(b)
are identified. Hence, we totally add three more NOT gates
G18, G19, and G20 to solve these FN fanout problems as
shown in Fig. 15(c). After restructuring the circuit, we start
to compute the sequence of operational pulses. Pulse 1 is
for initialization. Next, Pulse 2 to Pulse 14 are determined.
Then, a BN fanout at the output of G8 is identified and
solved by adding a NOT gate G21 as shown in Fig. 15(d),
and the corresponding sequence from Pulse 15 to Pulse 18 is
determined. After that, a fanout at the output of G11, which
is not conflicting fanouts, FN, or BN fanout, is identified.
Therefore, we solve it using the method in the previous
work, i.e., adding two additional NOT gates G22 and G23,
as shown in Fig. 15(e), and the sequence from Pulse 19 to
Pulse 21 is determined. Finally, an additional FN fanout, which
is a byproduct of solving the fanout at the output of G11,
is identified and solved by adding a NOT gate G24 as shown
in Fig. 15(f). The resultant IMPLY network without having any
fanout problems is shown in Fig. 15(g), and the corresponding
sequence of operational pulses is also listed. The memristors
M1 to M5 are initialized as five PI values (a, b, c, d , and e)
by applying the corresponding voltages, Vset or Vclear. The
voltage Vclear is applied to the other memristors, M6 to M16,
in the same pulse. In summary, 26 operational pulses and
16 memristors are required for performing this circuit.
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Fig. 17. Pseudocode of the first priority method.

C. Overall Algorithm

Fig. 16 shows the flowchart of the proposed algorithm.
Given a Boolean function, we transform it into and-inverter
graph (AIG) network. Then, we map the AIG network into
an IMPLY network by a technology mapping process. Next,
we solve the conflicting fanouts and FN fanouts by substitut-
ing the corresponding structures followed by the operational
pulse computation. After that, we deal with the remaining
fanouts accompanied with the operational pulse computation
iteratively. When all the fanout problems have been solved,
a realizable memristor-based IMPLY network is reported.

The pseudocodes of the first priority method to the
last priority method of the proposed algorithm are shown
in Figs. 17–20.

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language
within an ABC environment [33]. We conducted experiments
for a set of MCNC benchmarks on an Intel Xeon E5-2650V2
2.60 GHz CentOS 6.7 platform with 64-GB memory. The
multioutput benchmarks are separated as many single output
benchmarks in the experiments.

The experimental results are summarized in Table I.
Column 1 lists the benchmark information. Column 2 shows
our results including the number of required pulses and
memristors. Columns 3 and 5 show the results in the state
of the art [2], [11]. Columns 4 and 6 show the improvements

Fig. 18. Pseudocode of the second priority method.

Fig. 19. Pseudocode of the third priority method.

Fig. 20. Pseudocode of the last priority method.

of our approach against them. The CPU time of our approach
is less than 1 s.

For example, for the rd84f1 benchmark, the approach in [2]
needs 351 operational pulses, the approach in [11] needs
361 pulses, while our approach only requires 145 pulses.
Our reductions against [2] and [11] are 58.69% and 59.83%,
respectively. Furthermore, when considering the number of
required memristors in the resultant networks, [11] needs
215 memristors while our approach only requires 67 mem-
ristors. Around two thirds of memristors are saved for synthe-
sizing this benchmark using our approach.

According to Table I, the proposed approach only requires
47% operational pulses compared with [2] when considering
all the benchmarks. The average reduction is 27.43%. As com-
pared with [11], our approach only requires 57% pulses and
46% memristors when considering all the benchmarks. The
average reductions for the number of pulses and memristors
are 29.69% and 36.39%, respectively.



WANG et al.: ON SYNTHESIZING MEMRISTOR-BASED LOGIC CIRCUITS WITH MINIMAL OPERATIONAL PULSES 2851

TABLE I

COMPARISON OF EXPERIMENTAL RESULTS AMONG OUR APPROACH AND THE STATE OF THE ART

TABLE II

EXPERIMENTAL RESULTS FOR LARGER DESIGNS

According to Table I, we observed that in addition to the
operational pulse reduction, our approach can also reduce the
number of required memristors for area minimization. Note
that the work in the state of the art [11] is a memristor/CMOS
hybrid logic design. The CMOS components in the design still
occupy an extra area, which is excluded from the comparison
with our work.

In Table I, we also found that our approach did not reduce
the number of operational pulses compared with [2] and [11]
for a certain benchmark, e.g., newill_d. The reason behind this
might be that our approach conducted technology mapping
first for having an initial IMPLY network, which may cause
more IMPLY gates in the network compared with the previous
works.

Finally, we also conducted experiments for some larger
designs with more PIs to demonstrate the scalability of the pro-
posed approach. The experimental results are listed in Table II.

From the experimental results, we realized that the proposed
algorithm is structurally dependent. The number of required
pulses for the benchmarks with fewer PIs might be larger than
that of the benchmarks with more PIs.

V. CONCLUSION

Fanouts in memristor-based IMPLY networks are not always
realizable without errors. In this paper, we analyze the fanouts
in the circuits and present three methods to deal with the
fanout problems with a smaller number of operational pulse
increase. We also propose new XOR and XNOR structures
without having fanout problems. Not only operational pulses,
our approach also reduces the number of required memristors
in the resultant IMPLY networks compared with the state of
the art.
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